Equivariant neural networks for inverse problems

نویسندگان

چکیده

In recent years the use of convolutional layers to encode an inductive bias (translational equivariance) in neural networks has proven be a very fruitful idea. The successes this approach have motivated line research into incorporating other symmetries deep learning methods, form group equivariant networks. Much work been focused on roto-translational symmetry $\mathbf R^d$, but examples are scaling R^d$ and rotational sphere. work, we demonstrate that operations can naturally incorporated learned reconstruction methods for inverse problems by variational regularisation approach. Indeed, if functional is invariant under symmetry, corresponding proximal operator will satisfy equivariance property with respect same symmetry. As result observation, design iterative which operators modelled as We roto-translationally proposed methodology apply it low-dose computerised tomography subsampled magnetic resonance imaging reconstruction. demonstrated improve quality method little extra computational cost at training time without any test time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Networks for the Solution of Inverse Problems

In this work we present a variational formulation for neural networks. Within this formulation, the learning problem for the multilayer perceptron lies in terms of finding a function which is an extremal for some functional. As we will see, a variational formulation for neural networks provides a direct method for the solution of general variational problems, in any dimension and up to any degr...

متن کامل

Applications of Topological Derivatives and Neural Networks for Inverse Problems

Numerical method of identification for small circular openings in the domain of integration of an elliptic equation is presented. The method combines the asymptotic analysis of PDE’s with an application of neural networks. The asymptotic analysis is performed in singularly perturbed geometrical domains with the imperfections in form of small voids and results in the form of the so-called topolo...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

NETT: Solving Inverse Problems with Deep Neural Networks

Recovering a function or high-dimensional parameter vector from indirect measurements is a central task in various scientific areas. Several methods for solving such inverse problems are well developed and well understood. Recently, novel algorithms using deep learning and neural networks for inverse problems appeared. While still in their infancy, these techniques show astonishing performance ...

متن کامل

Solving ill-posed inverse problems using iterative deep neural networks

We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems

سال: 2021

ISSN: ['0266-5611', '1361-6420']

DOI: https://doi.org/10.1088/1361-6420/ac104f